5,041 research outputs found

    Separation of strangeness from antistrangeness in the phase transition from quark to hadron matter: Possible formation of strange quark matter in heavy-ion collisions

    Get PDF
    We present a mechanism for the separation of strangeness from antistrangeness in the deconfinement transition. For a net strangeness of zero in the total system, the population of s quarks is greatly enriched in the quark-gluon plasma, while the s¯ quarks drift into the hadronic phase. This separation could result in ‘‘strangelet’’ formation, i.e., metastable blobs of strange-quark matter, which could serve as a unique signature for quark-gluon plasma formation in heavy-ion collisions. PACS: 25.70.Np, 12.38.M

    From Strangeness Enhancement to Quark-Gluon Plasma Discovery

    Full text link
    This is a short survey of signatures and characteristics of the quark-gluon plasma in the light of experimental results that have been obtained over the past three decades. In particular, we present an in-depth discussion of the strangeness observable, including a chronology of the experimental effort to detect QGP at CERN-SPS, BNL-RHIC, and CERN-LHC.Comment: 30 pages, about 20 figures; Dedicated to our mentor Walter Greiner; to be published in the memorial volume edited by Peter O. Hes

    Dependenz und Valenz in romanischen Sprachen

    Get PDF

    The impact of spike timing variability on the signal-encoding performance of neural spiking models

    Get PDF
    It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit information in the form of discrete spike trains. In this study, we employ a signal estimation paradigm to determine how variability in spike timing affects encoding of random time-varying signals. We assess this for two types of spiking models: an integrate-and-fire model with random threshold and a more biophysically realistic stochastic ion channel model. Using the coding fraction and mutual information as information-theoretic measures, we quantify the efficacy of optimal linear decoding of random inputs from the model outputs and study the relationship between efficacy and variability in the output spike train. Our findings suggest that variability does not necessarily hinder signal decoding for the biophysically plausible encoders examined and that the functional role of spiking variability depends intimately on the nature of the encoder and the signal processing task; variability can either enhance or impede decoding performance

    Finding tight Hamilton cycles in random hypergraphs faster

    Full text link
    In an rr-uniform hypergraph on nn vertices a tight Hamilton cycle consists of nn edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of rr vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random rr-uniform hypergraphs with edge probability at least Clog3n/nC \log^3n/n. Our result partially answers a question of Dudek and Frieze [Random Structures & Algorithms 42 (2013), 374-385] who proved that tight Hamilton cycles exists already for p=ω(1/n)p=\omega(1/n) for r=3r=3 and p=(e+o(1))/np=(e + o(1))/n for r4r\ge 4 using a second moment argument. Moreover our algorithm is superior to previous results of Allen, B\"ottcher, Kohayakawa and Person [Random Structures & Algorithms 46 (2015), 446-465] and Nenadov and \v{S}kori\'c [arXiv:1601.04034] in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities pn1+εp\ge n^{-1+\varepsilon}, while the algorithm of Nenadov and \v{S}kori\'c is a randomised quasipolynomial time algorithm working for edge probabilities pClog8n/np\ge C\log^8n/n.Comment: 17 page

    Creation of strange-quark-matter droplets as a unique signature for quark-gluon plasma formation in relativistic heavy-ion collisions

    Get PDF
    We demonstrate that strangeness separates in the Gibbs-phase coexistence between a baryon-rich quark-gluon plasma and hadron matter, even at T=0. For finite temperatures this is due to the associated production of kaons (containing s¯ quarks) in the hadron phase while s quarks remain in the deconfined phase. The s-s¯ separation results in a strong enhancement of the s-quark abundance in the quark phase. This mechanism is further supported by cooling and net strangeness enrichment due to the prefreezeout evaporation of pions and K+, K0, which carry away entropy and anti- strangeness from the system. Metastable droplets (i.e., stable as far as weak interactions are not regarded) of strange-quark matter (‘‘strangelets’’) can thus be formed during the phase transition. Such cool, compact, long-lived clusters could be experimentally observed by their unusually small Z/A ratio (≤0.1–0.3). Even if the strange-quark-matter phase is not stable under strong interactions, it should be observable by the delayed correlated emission of several hyperons. This would serve as a unique signature for the transient formation of a quark-gluon plasma

    Channeling Brodsky

    Get PDF

    Some Thoughts on Wood Utilization Research

    Get PDF
    corecore